Need a Construction Site Safety Checklist?

Are you looking for a construction site safety checklist? The best place is to look is with the agency that’s going to come out to make sure you’re compliant. Turns out that OSHA has a great one. The list below is taken straight from the OSHA construction safety webpage:

Hazards & Solutions

For construction, the 10 OSHA standards most frequently included in the agency’s citations in FY 2004 were:

  1. Scaffolding
  2. Fall protection (scope, application, definitions)
  3. Excavations (general requirements)
  4. Ladders
  5. Head protection
  6. Excavations (requirements for protective systems)
  7. Hazard communication
  8. Fall protection (training requirements)
  9. Construction (general safety and health provisions)
  10. Electrical (wiring methods, design and protection)

Scaffolding

Hazard: When scaffolds are not erected or used properly, fall hazards can occur. About 2.3 million construction workers frequently work on scaffolds. Protecting these workers from scaffold-related accidents would prevent an estimated 4,500 injuries and 50 fatalities each year.

Solutions:

  • Scaffold must be sound, rigid and sufficient to carry its own weight plus four times the maximum intended load without settling or displacement. It must be erected on solid footing.
  • Unstable objects, such as barrels, boxes, loose bricks or concrete blocks must not be used to support scaffolds or planks.
  • Scaffold must not be erected, moved, dismantled or altered except under the supervision of a competent person.
  • Scaffold must be equipped with guardrails, midrails and toeboards.
  • Scaffold accessories such as braces, brackets, trusses, screw legs or ladders that are damaged or weakened from any cause must be immediately repaired or replaced.
  • Scaffold platforms must be tightly planked with scaffold plank grade material or equivalent.
  • A “competent person” must inspect the scaffolding and, at designated intervals, reinspect it.
  • Rigging on suspension scaffolds must be inspected by a competent person before each shift and after any occurrence that could affect structural integrity to ensure that all connections are tight and that no damage to the rigging has occurred since its last use.
  • Synthetic and natural rope used in suspension scaffolding must be protected from heat-producing sources.
  • Employees must be instructed about the hazards of using diagonal braces as fall protection.
  • Scaffold can be accessed by using ladders and stairwells.
  • Scaffolds must be at least 10 feet from electric power lines at all times.

Fall Protection

Hazard: Each year, falls consistently account for the greatest number of fatalities in the construction industry. A number of factors are often involved in falls, including unstable working surfaces, misuse or failure to use fall protection equipment and human error. Studies have shown that using guardrails, fall arrest systems, safety nets, covers and restraint systems can prevent many deaths and injuries from falls.

Solutions:

  • Consider using aerial lifts or elevated platforms to provide safer elevated working surfaces;
  • Erect guardrail systems with toeboards and warning lines or install control line systems to protect workers near the edges of floors and roofs;
  • Cover floor holes; and/or
  • Use safety net systems or personal fall arrest systems (body harnesses).

Ladders

Hazard: Ladders and stairways are another source of injuries and fatalities among construction workers. OSHA estimates that there are 24,882 injuries and as many as 36 fatalities per year due to falls on stairways and ladders used in construction. Nearly half of these injuries were serious enough to require time off the job.

Solutions:

  • Use the correct ladder for the task.
  • Have a competent person visually inspect a ladder before use for any defects such as:
    • Structural damage, split/bent side rails, broken or missing rungs/steps/cleats and missing or damaged safety devices;
    • Grease, dirt or other contaminants that could cause slips or falls;
    • Paint or stickers (except warning labels) that could hide possible defects
  • Make sure that ladders are long enough to safely reach the work area.
  • Mark or tag (“Do Not Use”) damaged or defective ladders for repair or replacement, or destroy them immediately.
  • Never load ladders beyond the maximum intended load or beyond the manufacturer’s rated capacity.
  • Be sure the load rating can support the weight of the user, including materials and tools.
  • Avoid using ladders with metallic components near electrical work and overhead power lines.

Stairways

Hazard: Slips, trips and falls on stairways are a major source of injuries and fatalities among construction workers.

Solutions:

  • Stairway treads and walkways must be free of dangerous objects, debris and materials.
  • Slippery conditions on stairways and walkways must be corrected immediately.
  • Make sure that treads cover the entire step and landing.
  • Stairways having four or more risers or rising more than 30 inches must have at least one handrail.

Trenching

Hazard: Trench collapses cause dozens of fatalities and hundreds of injuries each year. Trenching deaths rose in 2003.

Solutions:

  • Never enter an unprotected trench.
  • Always use a protective system for trenches feet deep or greater.
  • Employ a registered professional engineer to design a protective system for trenches 20 feet deep or greater.
  • Protective Systems:
    • Sloping to protect workers by cutting back the trench wall at an angle inclined away from the excavation not steeper than a height/depth ratio of 11 2 :1, according to the sloping requirements for the type of soil.
    • Shoring to protect workers by installing supports to prevent soil movement for trenches that do not exceed 20 feet in depth.
    • Shielding to protect workers by using trench boxes or other types of supports to prevent soil cave-ins.
  • Always provide a way to exit a trench–such as a ladder, stairway or ramp–no more than 25 feet of lateral travel for employees in the trench.
  • Keep spoils at least two feet back from the edge of a trench.
  • Make sure that trenches are inspected by a competent person prior to entry and after any hazard-increasing event such as a rainstorm, vibrations or excessive surcharge loads.

SLOPING. Maximum allowable slopes for excavations less than 20 ft. (6.09 m) based on soil type and angle to the horizontal are as follows:

Cranes

Hazard: Significant and serious injuries may occur if cranes are not inspected before use and if they are not used properly. Often these injuries occur when a worker is struck by an overhead load or caught within the crane’s swing radius. Many crane fatalities occur when the boom of a crane or its load line contact an overhead power line.

Solutions:

  • Check all crane controls to insure proper operation before use.
  • Inspect wire rope, chains and hook for any damage.
  • Know the weight of the load that the crane is to lift.
  • Ensure that the load does not exceed the crane’s rated capacity.
  • Raise the load a few inches to verify balance and the effectiveness of the brake system.
  • Check all rigging prior to use; do not wrap hoist ropes or chains around the load.
  • Fully extend outriggers.
  • Do not move a load over workers.
  • Barricade accessible areas within the crane’s swing radius.
  • Watch for overhead electrical distribution and transmission lines and maintain a safe working clearance of at least 10 feet from energized electrical lines.

Hazard Communication

Hazard: Failure to recognize the hazards associated with chemicals can cause chemical burns, respiratory problems, fires and explosions.

Solutions:

  • Maintain a Material Safety Data Sheet (MSDS) for each chemical in the facility.
  • Make this information accessible to employees at all times in a language or formats that are clearly understood by all affected personnel.
  • Train employees on how to read and use the MSDS.
  • Follow manufacturer’s MSDS instructions for handling hazardous chemicals.
  • Train employees about the risks of each hazardous chemical being used.
  • Provide spill clean-up kits in areas where chemicals are stored.
  • Have a written spill control plan.
  • Train employees to clean up spills, protect themselves and properly dispose of used materials.
  • Provide proper personal protective equipment and enforce its use.
    Store chemicals safely and securely.

Forklifts

Hazard: Approximately 100 employees are fatally injured and approximately 95,000 employees are injured every year while operating powered industrial trucks. Forklift turnover accounts for a significant number of these fatalities.

Solutions:

  • Train and certify all operators to ensure that they operate forklifts safely.
  • Do not allow any employee under 18 years old to operate a forklift.
  • Properly maintain haulage equipment, including tires.
  • Do not modify or make attachments that affect the capacity and safe operation of the forklift without written approval from the forklift’s manufacturer.
  • Examine forklift truck for defects before using.
  • Follow safe operating procedures for picking up, moving, putting down and stacking loads.
  • Drive safely–never exceed 5 mph and slow down in congested or slippery surface areas.
  • Prohibit stunt driving and horseplay.
  • Do not handle loads that are heavier than the capacity of the industrial truck.
  • Remove unsafe or defective forklift trucks from service.
  • Operators shall always wear seatbelts.
  • Avoid traveling with elevated loads.
  • Assure that rollover protective structure is in place.
  • Make certain that the reverse signal alarm is operational and audible above the surrounding noise level.

Head Protection

Hazard: Serious head injuries can result from blows to the head.

Solution:

  • Be sure that workers wear hard hats where there is a potential for objects falling from above, bumps to their heads from fixed objects, or accidental head contact with electrical hazards.

Safety Checklists

The following checklists may help you take steps to avoid hazards that cause injuries, illnesses and fatalities. As always, be cautious and seek help if you are concerned about a potential hazard.

Personal Protective Equipment (PPE)

Eye and Face Protection

  • Safety glasses or face shields are worn anytime work operations can cause foreign objects getting into the eye such as during welding, cutting, grinding, nailing (or when working with concrete and/or harmful chemicals or when exposed to flying particles).
  • Eye and face protectors are selected based on anticipated hazards.
  • Safety glasses or face shields are worn when exposed to any electrical hazards including work on energized electrical systems.

Foot Protection

  • Construction workers should wear work shoes or boots with slip-resistant and puncture-resistant soles.
  • Safety-toed footwear is worn to prevent crushed toes when working around heavy equipment or falling objects.

Hand Protection

  • Gloves should fit snugly.
  • Workers wear the right gloves for the job (for example, heavy-duty rubber gloves for concrete work, welding gloves for welding, insulated gloves and sleeves when exposed to electrical hazards).

Head Protection

  • Workers shall wear hard hats where there is a potential for objects falling from above, bumps to their heads from fixed objects, or of accidental head contact with electrical hazards.
  • Hard hats are routinely inspected for dents, cracks or deterioration.
  • Hard hats are replaced after a heavy blow or electrical shock.
  • Hard hats are maintained in good condition.

Scaffolding

  • Scaffolds should be set on sound footing.
  • Damaged parts that affect the strength of the scaffold are taken out of service.
  • Scaffolds are not altered.
  • All scaffolds should be fully planked.
  • Scaffolds are not moved horizontally while workers are on them unless they are designed to be mobile and workers have been trained in the proper procedures.
  • Employees are not permitted to work on scaffolds when covered with snow, ice, or other slippery materials.
  • Scaffolds are not erected or moved within 10 feet of power lines.
  • Employees are not permitted to work on scaffolds in bad weather or high winds unless a competent person has determined that it is safe to do so.
  • Ladders, boxes, barrels, buckets or other makeshift platforms are not used to raise work height.
  • Extra material is not allowed to build up on scaffold platforms.
  • Scaffolds should not be loaded with more weight than they were designed to support.

Electrical Safety

  • Work on new and existing energized (hot) electrical circuits is prohibited until all power is shut off and grounds are attached.
  • An effective Lockout/Tagout system is in place.
  • Frayed, damaged or worn electrical cords or cables are promptly replaced.
  • All extension cords have grounding prongs.
  • Protect flexible cords and cables from damage. Sharp corners and projections should be avoided.
  • Use extension cord sets used with portable electric tools and appliances that are the three-wire type and designed for hard or extra-hard service. (Look for some of the following letters imprinted on the casing: S, ST, SO, STO.)
  • All electrical tools and equipment are maintained in safe condition and checked regularly for defects and taken out of service if a defect is found.
  • Do not bypass any protective system or device designed to protect employees from contact with electrical energy.
  • Overhead electrical power lines are located and identified.
  • Ensure that ladders, scaffolds, equipment or materials never come within 10 feet of electrical power lines.
  • All electrical tools must be properly grounded unless they are of the double insulated type.
  • Multiple plug adapters are prohibited.

Floor and Wall Openings

  • Floor openings (12 inches or more) are guarded by a secured cover, a guardrail or equivalent on all sides (except at entrances to stairways).
  • Toeboards are installed around the edges of permanent floor openings (where persons may pass below the opening).

Elevated Surfaces

  • Signs are posted, when appropriate, showing the elevated surface load capacity.
  • Surfaces elevated more than 48 inches above the floor or ground have standard guardrails.
  • All elevated surfaces (beneath which people or machinery could be exposed to falling objects) have standard 4-inch toeboards.
  • A permanent means of entry and exit with handrails is provided to elevated storage and work surfaces.
  • Material is piled, stacked or racked in a way that prevents it from tipping, falling, collapsing, rolling or spreading.

Hazard Communication

  • A list of hazardous substances used in the workplace is maintained and readily available at the worksite.
  • There is a written hazard communication program addressing Material Safety Data Sheets (MSDS), labeling and employee training.
  • Each container of a hazardous substance (vats, bottles, storage tanks) is labeled with product identity and a hazard warning(s) (communicating the specific health hazards and physical hazards).
  • Material Safety Data Sheets are readily available at all times for each hazardous substance used.
  • There is an effective employee training program for hazardous substances.

Crane Safety

  • Cranes and derricks are restricted from operating within 10 feet of any electrical power line.
  • The upper rotating structure supporting the boom and materials being handled is provided with an electrical ground while working near energized transmitter towers.
  • Rated load capacities, operating speed and instructions are posted and visible to the operator.
  • Cranes are equipped with a load chart.
  • The operator understands and uses the load chart.
  • The operator can determine the angle and length of the crane boom at all times.
  • Crane machinery and other rigging equipment is inspected daily prior to use to make sure that it is in good condition.
  • Accessible areas within the crane’s swing radius are barricaded.
  • Tag lines are used to prevent dangerous swing or spin of materials when raised or lowered by a crane or derrick.
  • Illustrations of hand signals to crane and derrick operators are posted on the job site.
  • The signal person uses correct signals for the crane operator to follow.
  • Crane outriggers are extended when required.
  • Crane platforms and walkways have antiskid surfaces.
  • Broken, worn or damaged wire rope is removed from service.
  • Guardrails, hand holds and steps are provided for safe and easy access to and from all areas of the crane.
  • Load testing reports/certifications are available.
  • Tower crane mast bolts are properly torqued to the manufacturer’s specifications.
  • Overload limits are tested and correctly set.
  • The maximum acceptable load and the last test results are posted on the crane.
  • Initial and annual inspections of all hoisting and rigging equipment are performed and reports are maintained.
  • Only properly trained and qualified operators are allowed to work with hoisting and rigging equipment.

Forklifts

  • Forklift truck operators are competent to operate these vehicles safely as demonstrated by their successful completion of training and evaluation.
  • No employee under 18 years old is allowed to operate a forklift.
  • Forklifts are inspected daily for proper condition of brakes, horns, steering, forks and tires.
  • Powered industrial trucks (forklifts) meet the design and construction requirements established in American National Standards Institute (ANSI) for Powered Industrial Trucks, Part II ANSI B56.1-1969.
  • Written approval from the truck manufacturer is obtained for any modification or additions which affect capacity and safe operation of the vehicle.
  • Capacity, operation and maintenance instruction plates, tags or decals are changed to indicate any modifications or additions to the vehicle.
  • Battery charging is conducted in areas specifically designated for that purpose.
  • Material handling equipment is provided for handling batteries, including conveyors, overhead hoists or equivalent devices.
  • Reinstalled batteries are properly positioned and secured in the truck.
  • Smoking is prohibited in battery charging areas.
  • Precautions are taken to prevent open flames, sparks or electric arcs in battery charging areas.
  • Refresher training is provided and an evaluation is conducted whenever a forklift operator has been observed operating the vehicle in an unsafe manner and when an operator is assigned to drive a different type of truck.
  • Load and forks are fully lowered, controls neutralized, power shut off and brakes set when a powered industrial truck is left unattended.
  • There is sufficient headroom for the forklift and operator under overhead installations, lights, pipes, sprinkler systems, etc.
  • Overhead guards are in place to protect the operator against falling objects.
  • Trucks are operated at a safe speed.
  • All loads are kept stable, safely arranged and fit within the rated capacity of the truck.
  • Unsafe and defective trucks are removed from service.






Proposed Worker ID Card Being Discussed in Philly

A building collapse that claimed the lives of six construction workers this year now has city officials considering a new law that might have greater implications for construction workers all over the country. All construction workers working in Philadelphia would be required to carry a worker ID Card certifying that they are qualified to work on the site.

As the Philadelphia CityPaper tells it “The “wallet-sized ID cards” would indicate that a worker had attended a 10-hour Occupational Safety and Health Administration course on construction safety, training that would also be mandated by the bill for anyone working at any construction site in Philadelphia.

While the proposition seems to be a no-brainer, there are those who worry about day laborers hired through outside agencies to do simple jobs like clean up trash, unload equipment, etc… Many of these workers are undocumented, even illegal aliens and even those who do have documentation might find the 10-hour class too much.

What do you think? Does this make sense? Why? Why not? Should this idea be extended to all cities?


Free Download of Construction Health and Safety Manual

From the Infrastructure Health and Safety Association website:

The Construction Health and Safety Manual is our most comprehensive health and safety guide. It’s a must-have for every construction worker and helps you recognize and protect yourself against health and safety hazards.

Two versions of the manual have been produced; one is for general construction work (M029) and the other includes certain trade-specific material (M033). Each chapter in both manuals is available to download in English or en français.

Order hard-copy versions of M029 or M033, or click on the links below to download individual chapters.

Disponible en français Manuel de santé et sécurité de l’industrie de la construction (M029F)

Legal Responsibilities and Emergencies


Health


Equipment


Hazards


Tools and Techniques


Special Locations (M033)


Trade-Specific Information (M033)

 


Paying OSHA Citations For Not Training Workers vs. Actuallly Training Workers

Reblogged from L.A.W. Construction Safety Consultants, LLC

 

OSHA fines cost companies, small and large, millions of dollars each year. What some companies may not know is it’s a lot easier to have citations reduced or even deleted when you’re making an effort to maintain a safe workplace. One very important way to ensure worker safety is to schedule training for them – training which OSHA requires you to have in the first place!

Still feel like you can get around not providing training to save money? Let’s take a look at some OSHA regulations and their respective citations from construction firms this past year and compare them to how much training would have cost the employer…and I’m sure you’ll see it’s much cheaper to do the training!

OSHA Violations (Top 5 of the Yearly 10 Most Cited)

1. Scaffolding 1926.454

All persons working on a scaffold has to be trained by a qualified person in the following areas: electrical hazards, fall hazards, falling object hazards, proper use of scaffolds, proper handling of materials on scaffolds, maximum intended load on scaffold.

There is also mandatory training for those who erect, disassemble, move, operate, repair, maintain and/or inspect the scaffold. Employers are also required to have a Competent Person on site at all times when workers are on the scaffold.

Approximate cost of training for 10 employees and 1 Competent Person: $1,300

In December 2011, OSHA fined a Georgia stucco company $62,000 for having workers on a scaffold 30 feet in the air. This scaffold was missing planks, base plates and cross braces. Guardrails or other means of fall protection was not provided and workers were not trained.

$1,300 training cost vs. $62,000 in OSHA fines…which would you rather?

2. Fall Protection 1926.503

The employer shall provide a training program for each employee who might be exposed to fall hazards. The employees have to be trained by a Competent Person in the following areas: nature of fall hazards (site specific), correct procedures for erecting, maintaining, disassembling and inspecting fall protection systems, the use and operation of fall protection systems to be used, the role of employees in fall protection, and much more. If the employer does not have a Competent Person in place, they may have to train someone or hire someone to fill this role.

Approximate cost of training for 10 employees and 1 Competent Person: $2,000

In June 2011, OSHA cited a Maine roofing contractor $243,000 for having workers on a steep pitch roof without fall protection. This firm has had extensive issues in the past with violations prompting OSHA to cite them with egregious willful violations.

$2,000 training cost vs. $243,000 in OSHA fines…which would you rather?

3. Hazard Communication 1910.1200

OSHA requires employers to train employees at the time they are assigned to work with a potentially hazardous chemical and when/if new chemicals are introduced to the work area.

Approximate cost of training for 10 workers: $1,200

OSHA hands out approximately 1,311 citations per year to companies for not having a Hazard Communication Plan in place, not training employees and failure to maintain Material Safety Data Sheets. Average fines can cost $281.00 per violation.

4. Respiratory Protection 1926.103

OSHA requires all employers who require or use chemicals which require employees to wear a respirator to implement a respiratory protection plan, train employees on the plan, fit test employees, proper use and maintenance of respirators and have a Program Administrator in place who is properly trained. This person may be a new hire, newly trained employee or a consultant hired by the company.

Approximate cost of training for 10 workers: $2,500

In June 2011, OSHA fined a dairy farm in Wisconsin $70,000 for employee overexposure to respirable dust, failure to implement a respiratory protection plan amongst other issues.

5. Ladders 1926.1050

Ladder training is probably the easiest and cheapest training a company can schedule for their employees. But OSHA estimates there are 24,882 injuries and as many as 36 fatalities per year due to falls from stairways and ladders used in construction.

OSHA requires all employers to train their employees on hot to properly use ladders and recognize fall hazards from ladders and stairs. Workers also need to know not to use defective ladders as well as how to remove and/or destroy ladders.

This training can be done at very little cost to no cost to employers – a Tool Box Talk found on the internet can fulfill the training requirement.

In May 2011, OSHA cited a contractor a total of $139,260 of proposed fines for numerous issues including worker on damaged 32-foot extension ladder, ladder not set up properly, ladder unsecured, ladder not inspected prior to use, ladder set up on a pile of debris.

30 minutes of your time and worker attention vs. $139,260 in OSHA fines…which would you rather?

Here’s an interesting fact from OSHA if you’re still not convinced that an effective training program for your employees can save you money: “An effective health and safety program forms the basis of good worker protection and can save time and money – about $4 for every dollar spent – and increase productivity and reduce worker injuries, illnesses and related workers’ compensation costs.”

The approximate costs depicted in this posting are what I normally charge my clients. I haven’t looked to see what other consulting firms charge but keep in mind, you get what you pay for. Some trainers are really good and some are really bad. Make sure you do your research before attending any training classes or sending your employees to training.

To discuss training packages for your specific needs, contact L.A.W. Construction Safety Consultants today at 404-961-7678. We look forward to hearing from you!


OSHA v-Tools

In an effort to address the more than 800 construction worker deaths and 137,000 injuries, OSHA has put together a special “V-Tools: Construction Hazards” website.

The website consists of a virtual construction site (see below). Click around on it to launch a video that addresses the hazard that might be present based on what’s happening at that location.

The videos are intended to “show how quickly workers can be injured or killed on the job and are intended to assist those in the industry to identify, reduce, and eliminate construction-related hazards. Most of the videos are 2 to 4 minutes long, presented in clear, easily accessible vocabulary, and show common construction worksite activities. The videos may be used for employer and worker training. Each video presents:

  • A worksite incident based on true stories that resulted in worker injury or death.
  • Corrective actions for preventing these types of accidents.

Please be advised, some of the videos deal with deaths at construction sites and might be disturbing for some people.”